જો $\alpha ,\beta ,\gamma $ એ અનુક્રમે રેખાએ $x, y$ અને $z$ અક્ષો સાથે બનાવેલ ખૂણાઑ છે કે જેથી $2\left( {\frac{{{{\tan }^2}\,\alpha }}{{1 + {{\tan }^2}\,\alpha }} + \frac{{{{\tan }^2}\,\beta }}{{1 + {{\tan }^2}\,\beta }} + \frac{{{{\tan }^2}\,\gamma }}{{1 + {{\tan }^2}\,\gamma }}} \right) = 3\,{\sec ^2}\,\frac{\theta }{2},$ થાય તો $\theta $ ની કિમત મેળવો
$\frac{\pi }{{12}}$
$\frac{\pi }{{10}}$
$\frac{\pi }{{6}}$
$\frac{\pi }{{3}}$
જો $(2\cos x - 1)(3 + 2\cos x) = 0,\,0 \le x \le 2\pi $, તો $x = $
સમીકરણ $2\cos ({e^x}) = {5^x} + {5^{ - x}}$ ના ઉકેલની સંખ્યા મેળવો.
$sin 3\theta = 4 sin\, \theta \,sin \,2\theta \,sin \,4\theta$ નું $0\, \le \,\theta\, \le \, \pi$ માં વાસ્તવિક ઉકેલોની સંખ્યા ................ છે
જો $|cos\ x + sin\ x| + |cos\ x\ -\ sin\ x| = 2\ sin\ x$ ; $x \in [0,2 \pi ]$ થાય તો $x$ ની મહતમ પૂર્ણાક કિમત મેળવો.
$2{\sin ^2}x + {\sin ^2}2x = 2,\, - \pi < x < \pi ,$ તો $x = $